更新时间:2021-05-17 20:02:25
科技、数码、互联网新闻如今都成为了大众所关注的热点了,因为在我们的生活当中如今已经是处处与这些相关了,不论是手机也好,电脑也好,又或者是智能手表也好,与之都相关,那么今天小编也是为大家来推荐一篇关于互联网科技数码方向的文章,希望大家会喜欢哦。
异常检测涵盖了大量数据分析用例。然而,这里的异常检测特指检测意外事件,无论是心脏事件,机械故障,黑客攻击还是欺诈性交易。
事件的意外特征意味着数据集中没有这样的示例。分类解决方案通常需要所有相关类的一组示例。那么,在没有可用示例的情况下,我们该如何处理?它需要稍微改变一下。
在这种情况下,我们只能训练非故障数据的机器学习模型; 也就是说,描述系统在正常条件下运行的数据。输入数据是异常还是仅仅是常规操作的评估只能在预测完成后在部署中执行。这个想法是在正常数据上训练的模型只能预测下一个正常的样本数据。但是,如果系统不再在正常情况下工作,输入数据将不会描述正确工作的系统,并且模型预测将偏离现实。然后,现实样本和预测样本之间的误差可以告诉我们基础系统的条件。
在IoT(物联网)数据中,信号时间序列由策略性地位于机械设备或组件上或周围的传感器产生。时间序列是变量随时间变化的值序列。在这种情况下,变量描述了设备的机械特性,并且通过一个或多个传感器测量。通常,机械设备正常工作。因此,我们在正常条件下工作的设备有大量样本,接近零设备故障示例。特别是如果设备在机械链中起着关键作用,它通常会在任何故障发生之前退役并损害整个机器。
因此,我们只能在描述系统按预期工作的多个时间序列上训练机器学习模型。当系统正常工作时,该模型将能够预测时间序列中的下一个样本,因为这是它的训练方式。然后我们计算预测样本和实际样本之间的距离,然后从中得出关于一切是否按预期工作或是否有任何理由需要关注的结论。
Bose为新老智能扬声器带来了Google智能助理
三星取消Galaxy S20 FE One UI 3.1更新
Microsoft xCloud可能即将公开发布
AMD Ryzen 3 3100 / 3300X 处理器评测
Google发布了指南以帮助构建“优质应用”
iQOO Neo5零售包装盒与66W闪存充电器一起泄漏
发现具有自毁功能的Apple M1 Mac的第二种恶意软件
Realme GT:配备Snapdragon 888处理器并将支持5G
Dremio将机器学习添加到自助数据分析平台
绘制个人可识别信息与公开推断的见解之间的敏感界限
SnapLogic新的基于云的数据集成平台甚至可以为您管理服务器
Tableau未达到利润预期但订阅销售激增使投资者欢呼